Discovering Discriminative and Interpretable Patterns for Surgical Motion Analysis
نویسندگان
چکیده
The analysis of surgical motion has received a growing interest with the development of devices allowing their automatic capture. In this context, the use of advanced surgical training systems make an automated assessment of surgical trainee possible. Automatic and quantitative evaluation of surgical skills is a very important step in improving surgical patient care. In this paper, we present a novel approach for the discovery and ranking of discriminative and interpretable patterns of surgical practice from recordings of surgical motions. A pattern is defined as a series of actions or events in the kinematic data that together are distinctive of a specific gesture or skill level. Our approach is based on the discretization of the continuous kinematic data into strings which are then processed to form bags of words. This step allows us to apply discriminative pattern mining technique based on the word occurrence frequency. We show that the patterns identified by the proposed technique can be used to accurately classify individual gestures and skill levels. We also present how the patterns provide a detailed feedback on the trainee skill assessment. Experimental evaluation performed on the publicly available JIGSAWS dataset shows that the proposed approach successfully classifies gestures and skill levels.
منابع مشابه
Cadre Modeling: Simultaneously Discovering Subpopulations and Predictive Models
We consider the problem in regression analysis of identifying subpopulations that exhibit different patterns of response, where each subpopulation requires a different underlying model. Unlike statistical cohorts, these subpopulations are not known a priori; thus, we refer to them as cadres. When the cadres and their associated models are interpretable, modeling leads to insights about the subp...
متن کاملEfficient Mining of Top-k Breaker Emerging Subgraph Patterns from Graph Datasets
This paper introduces a new type of discriminative subgraph pattern called breaker emerging subgraph pattern by introducing three constraints and two new concepts: base and breaker. A breaker emerging subgraph pattern consists of three subpatterns: a constrained emerging subgraph pattern, a set of bases and a set of breakers. An efficient approach is proposed for the discovery of top-k breaker ...
متن کاملUse of a machine learning algorithm to classify expertise: analysis of hand motion patterns during a simulated surgical task.
PURPOSE To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. METHOD In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participan...
متن کاملDPPred: An Effective Prediction Framework with Concise Discriminative Patterns
In the literature, two series of models have been proposed to address prediction problems including classification and regression. Simple models, such as generalized linear models, have ordinary performance but strong interpretability on a set of simple features. The other series, including tree-based models, organize numerical, categorical and high dimensional features into a comprehensive str...
متن کاملMid-level Representation for Visual Recognition
Visual Recognition is one of the fundamental challenges in AI, where the goal is to understand the semantics of visual data. Employing mid-level representation, in particular, shifted the paradigm in visual recognition. The mid-level image/video representation involves discovering and training a set of mid-level visual patterns (e.g., parts and attributes) and represent a given image/video util...
متن کامل